Tunable BST-Varactor-Based Matching Networks for Mobile Radio Applications

Errikos Lourandakis, Matthias Schmidt, Robert Weigel
IMS 2008 - Workshop
Outline

- Motivation
- BST Thin-Film Varactors
- Matching Network Topologies
 - L, Π, T, and Reflection-type
- Linear and Nonlinear Behaviour
- Measurement Results
- Summary
Motivation

- Increasing number of mobile standards
Mismatch Conditions

- Antenna
- Power amplifier
Antenna Mismatch

- Detuning of antenna impedance
- Near-field distortion

E. Lourandakis
06 / 16 / 2008

IMS 2008 - Workshop
Ferroelectric Varactors

- **Thin-film**
 - Low bias voltage
 - High C value
 - High tunability
 - Resonances

- **Thick-film**
 - High bias voltage
 - Low C value
 - Low tunability
 - Large area
$\text{Ba}_x\text{Sr}_{(1-x)}\text{TiO}_3$ – Crystal

- Perovskite-type crystal
- Ba / Sr ratio

$C_{BST}(U) = \frac{C_{\text{max}}}{2 \cosh \left(\frac{2}{3} \sinh^{-1} \left(\frac{2U}{U_{C_{\text{max}}/2}} \right) \right) - 1}$
Varactor Modelling

- BVD model
- Mason model
Varactor Modelling (2)

Quality Factor Q

$U_{DC} = 0\, \text{V}$

$U_{DC} = 5\, \text{V}$

$U_{DC} = 10\, \text{V}$

$U_{DC} = 25\, \text{V}$

Frequency (GHz)
Acoustic Resonances

- Layered material stack
- Discrete acoustic impedances
- Parasitic “FBAR”

IMS 2008 - Workshop
L - Matching Network

- PA Matching
- Tunable L is series LC
- Small matching area
L - Network Gain

Fixed MN with Zin=25Ω
SMD 0402 components

Qc=50

Qc=25

Gain (dB)

• Losses for minor impedance variations
L - Matching Area

- Excellent agreement
- Dynamically adjustable PA impedance

Simulated vs **Measured**

Transducer Power Loss (dB)

IMS 2008 - Workshop
Π - Matching Network

- High C value
- Suitable for low impedances
- Low IMD
• Gain for significant impedance variations
Π – Matching Area

- Excellent agreement
- Losses increase for higher impedances

Simulated Measured

Transducer Power Loss (dB)
Assembly Parasitics

Simulated with bond wires

Simulated without bond wires

Measured

Transducer Power Loss (dB)
T – Matching Network

- Low C values
- Suitable for high impedances
- High IMD
T – Network Gain

- Gain for significant impedance variation

IMS 2008 - Workshop
T – Matching Area

- Excellent agreement
- Higher losses for low impedances
Reflection – Matching Network

- Total Smith-chart area coverage
- Hybrid coupler and phase shifters
- Large circuit dimension
Reflection Type Circuit

- High Q values for varactors lead to large matching area
Reflection – Network Gain

- Gain for significant impedance variation

![Reflection and Network Gain Diagram](image-url)
Reflection – Matching Area

- Excellent agreement
- Symmetric matching area
Varactor Nonlinearity

- High tunability results in high IMD
Cascaded Capacitors

- Smaller voltage swing for cascaded C
Two-Tone Setup

• Typical 2-tone setup

IMS 2008 - Workshop
L – Linearity

\[\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4 \]

IMS 2008 - Workshop
L – Network IP3

- Pin=20dBm
Π – Network IP3

- \(N = 2 \)
 - \(IP_{3,\text{min}} = 35.3 \text{ dBm} \)

- \(N = 5 \)
 - \(IP_{3,\text{min}} = 43.3 \text{ dBm} \)

- \(N = 8 \)
 - \(IP_{3,\text{min}} = 47.2 \text{ dBm} \)

- \(\text{Pin} = 20 \text{ dBm} \)

IMS 2008 - Workshop
T – Linearity

\[\Gamma_1 \]

\[\Gamma_2 \]

\[\Gamma_3 \]

\[\Gamma_4 \]
T – Network IP3

- Pin = 20 dBm
Reflection MN – Linearity

\[\Gamma_1 \]

\[\Gamma_2 \]

\[\Gamma_3 \]

\[\Gamma_4 \]
Reflection MN – Network IP3

N=5

Pin=20dBm

N=10
Summary

- BST thin-film varactors & modelling
- Matching networks
 - L-topology
 - Π-topology
 - T-topology
 - Reflection-type
- Linear and nonlinear investigation
- Measurements
Thank you for your attention