

Reconfigurable Front-End Modules Based on Ferroelectric Varactors

R. Weigel and E. Lourandakis

Institute for Electronics Engineering, University Erlangen-Nuremberg Cauerstraße 9, 91058 Erlangen, Germany

weigel@lfte.de

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

- Motivation
- **Tunable Passive Components**
- Part 1 \bullet
 - Frequency Agile Filters
 - Frequency Agile Power Dividers & Couplers

EnWiT

- Prototype Implementation & Results
- Part 2
 - Impedance Matching Networks
 - L, Pi, T, and reflection type
 - Prototype Implementation & Results
- Conclusion

Motivation

- Increasing number of communication bands
- Additional wireless services, e.g. GPS, WiMAX
- Demand for reconfigurable front-end solutions

EnWiT

2009

EuWiT

2009

- Compact dimensions
- Induced acoustic resonance

EuMIC

Filter Design – Lowpass

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Chebyshev lowpass filter

 Analytical formulas for zero locations

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009 EnWiT

2009

ETRAL

Friedrich-Alexander-Universität Filter Design – Notch Filter

Notch filter

Erlangen-Nürnberg

 Analytical formulas for zero and pole locations

zero
$$z_1 = \jmath \omega_1 = \pm \sqrt{-2/[(L_1 + L_2)C]}$$

pole $p_2 = \jmath \omega_2 = \pm \sqrt{-2/(L_2C)}$

EURAD

2009

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009

2

EuMIC

Modified Combline Filter

EuWiT

2009

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Friedrich-Alexander-Universität **1** Frequency Agile $\lambda/4$ Segments

EuWiT

2009

2009

2009

Scalable network

- Slightly detuned Z
- Perfect phase shift

Tunable Wilkinson Divider

- Size reduction 50%
- Multiband tuning
- Assumed tunability 60%

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009

2009

Tunable Branch-Line Coupler

EuWiT

2009

• Size reduction 50%

Friedrich-Alexander-Universität

Erlangen-Nürnberg

- Perfect phase match
- C_{eq} serves as shunt element for both segments

EUROPEAN

CONFEREN

Tunable Branch-Line Coupler

EuMIC

2009

2009

EuWiT

2009

- Size reduction 50%
- Perfect phase shift
- Multiband operation with tunability of 60% for C_{ea}

Friedrich-Alexander-Universität Erlangen-Nürnberg

Tunable Lowpass (1)

EnWiT

2009

2009

2009

Friedrich-Alexander-Universität

Erlangen-Nürnberg

- Tuning range of 30%
- 1.5-2GHz multiband
- High losses due to moderate Q and RF isolation

MICROWAY

Tunable Lowpass (2)

EnWiT

2009

Good agreement

Friedrich-Alexander-Universität

- Loss due to varactor imbalances and prototype assembly
- Two-tone test @ 1.95GHz with Δf=5MHz and Bias=20V

Tunable Notch Filter (1)

EuWiT

2009

Friedrich-Alexander-Universität

- Cascaded varactors simplify biasing
- Notch tuning 1.5-2.1GHz
- Multiband operation
- Low losses

Tunable Notch Filter (2)

Friedrich-Alexander-Universität

Erlangen-Nürnberg

- Good agreement between simulation and measurement
- Two-tone test @ 1.95GHzwith $\Delta f=5MHz$ and Bias=20V

EnWiT

2009

EURAD

Friedrich-Alexander-Universität Erlangen-Nürnberg Tunable Combline Filter (1) Bias : C_{BST} Bias Measured C_{BST} Simulated -10 (dB) -15 -20 -25 RF-choke 8.5mm Port 1 Port 2 $\lambda/8$

Port 2

Bonds

-30 -3

-10

-15

-20

-25

-30 -3

2009

Magnitude (dB)

1.5

1.5

2

Frequency (GHz)

2.5

3

Measured Simulated

3

3.5

3.5

Good agreement

 C_2

- **Compact dimensions**
- IL < 3dB and RL > 20dB

Bond wires

Port 1

4mm

 C_{2}

Tuning 1.8-2GHz

2.5

2

Frequency (GHz)

Tunable Combline Filter (2)

Bias

Bonds

EuWiT

2009

EuMIC

2009

EURAD

2009

Bias=5V

Port 2 Port 1 Port 2

Bias (V)	$f_0 (\mathrm{GHz})$	IL (dB)	RL (dB)
0	1.85	2.8	20
5	1.90	2.7	22
10	1.97	2.6	26
15	2.02	2.6	28

EUROPEAN MICROWAY

CONFERENCE

• Two-tone test @1.95GHz

with $\Delta f=5MHz$ and

 $2\lambda_1$

 λ_1

RF-choke

Port 1

Tunable Wilkinson Divider (1)

Friedrich-Alexander-Universität

Erlangen-Nürnberg

3

3

3.5

3.5

Friedrich-Alexander-Universität Tunable Wilkinson Divider (2)

EuWiT

2009

Erlangen-Nürnberg

- IL < 1.2dB, Isolation > 25dB
- Lowpass filtering S₂₁, S₃₁
- Attenuation > 20dB at $2f_0$
- Tuning range 1.7-2.1GHz

-120<u>-</u>5

0

10

5

Tone Input Power (dBm)

Simulated

Tunable Branch-Line (1)

EuWiT

2009

2009

2009

Friedrich-Alexander-Universität

Erlangen-Nürnberg

- Size reduction 50%
- Lowpass filtering
- Attenuation > 30dB at second harmonic

EUROPEAN

Tunable Branch-Line (2)

()

WORKSHOP AND SHORT COURSES

Friedrich-Alexander-Universität

Erlangen-Nürnberg

European Microwave Week, Rome, 28th Sept. - 2^{cd} Oct. 2009

3.5

3.5

3.5

Tunable Branch-Line (3)

- Tuning range 1.8-2.3GHz
- IL < 2.7dB, RL > 15dB
- Amplitude error < 0.4dB, phase error < 5deg

EuWiT

2009

Friedrich-Alexander-Universität

Part 2 – Impedance Matching

- Motivation Missmatch Conditions
- L Matching Network

Friedrich-Alexander-Universität

- Pi Matching Network
- T Matching Network
- Reflection Type Matching Network

Mismatch Conditions

• Antenna

Power Detector

- Power amplifier

EuWiT

2009

 (\bigcirc)

Friedrich-Alexander-Universität

L - Matching Network

- PA Matching
- Tunable L is series LC
- Small matching area

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

L - Network Gain

• Fixed MN with Zin=25Ω SMD 0402 components

EuWiT

2009

Losses for minor impedance variations

Friedrich-Alexander-Universität

L - Matching Area

CONFERENCE

EUROPEAN

EURAD

2009

EuMIC

2009

• Dynamically adjustable PA impedance

EuWiT

2009

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

П - Matching Network

EuWiT

2009

- High C value
- Suitable for low impedances
- Low IMD

Friedrich-Alexander-Universität

Π – Network Gain

Gain for significant impedance variations

EuWiT

2009

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009

Friedrich-Alexander-Universität

Erlangen-Nürnberg

2009 an Radar Conference

Π – Matching Area

- Excellent agreement
- Losses increase for higher impedances \bullet

EuWiT

2009

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. - 2^{cd} Oct. 2009

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Assembly Parasitics

Simulated with bond wires

2009

WORKSHOP AND SHORT COURSES

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Europe

an Radar Conference

CONFERENCE

EUROPEAN MICROWAV

EuWiT

2009

EURAD

2009

EuMIC

2009

- Low C values
- Suitable for high impedances
- High IMD

Friedrich-Alexander-Universität

T – Network Gain

• Gain for signifficant impedance variation

EuWiT

2009

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

EURAD

T – Matching Area

EuWiT

2009

- Excellent agreement
- Higher losses for low impedances

Friedrich-Alexander-Universität

Reflection – Matching Network

EnWiT

2009

- Total Smith chart area coverage
- Hybrid coupler and phase shifters
- Large circuit dimension

Friedrich-Alexander-Universität

Erlangen-Nürnberg

EuMIC

Reflection Type Circuit

 High Q values for varactors lead to large matching area

EuWiT

2009

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

Friedrich-Alexander-Universität

Erlangen-Nürnberg

EURAD

2009

EuMIC

• Gain for signifficant impedance variation

EuWiT

2009

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

Reflection – Matching Area

CONFERENC

EUROPEAN

EuWiT

2009

Excellent agreement

Transducer Power Loss (dB)

EURAD

2009

EuMIC

2009

Symmetric matching area

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

Friedrich-Alexander-Universität

Conclusion

Conclusion

- Potential of ferroelectrics in tunable front-end
- Tunable microwave circuits
- Prototype implementation & results

Outlook

 Integration of tunable microwave subsystems in front-end architectures

